5x^2+6x+8=24+6x

Simple and best practice solution for 5x^2+6x+8=24+6x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x^2+6x+8=24+6x equation:



5x^2+6x+8=24+6x
We move all terms to the left:
5x^2+6x+8-(24+6x)=0
We add all the numbers together, and all the variables
5x^2+6x-(6x+24)+8=0
We get rid of parentheses
5x^2+6x-6x-24+8=0
We add all the numbers together, and all the variables
5x^2-16=0
a = 5; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·5·(-16)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*5}=\frac{0-8\sqrt{5}}{10} =-\frac{8\sqrt{5}}{10} =-\frac{4\sqrt{5}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*5}=\frac{0+8\sqrt{5}}{10} =\frac{8\sqrt{5}}{10} =\frac{4\sqrt{5}}{5} $

See similar equations:

| 3a-12=2a+6= | | -6x-2=6x+9 | | 2x^2=x^2-9+x | | -87=-5(2x+5)-2 | | y/4=17/13 | | 2y+15=3y+7 | | 3x2-x=7x | | 5(-1y+-6)=-10 | | 8x-15=6x+2x= | | n^2+2n/3=4 | | -3u+2=-9 | | -16=-9n+16n+4 | | k+3(8k+3)=-91 | | 3(2x+1)-5(x-1)=0 | | 14.4/x=1.2 | | 2r+36/r=30 | | 24a-10a=-2(a-8a) | | (x+5)+(2x-7)=13 | | 8(1+5x)-2=-114 | | -5a-15=-35 | | 2r+32/r=30 | | 8(1+5x)-2=-144 | | 4x^2-5x=6x^2-x | | 2x-4(4+9x)=4(7x+8) | | 19=4e+7 | | -6-5u=3.75 | | x+2x+x+5=600 | | x+2x+(x+5)=600 | | 15x-3=12x+27 | | 4=4-5r | | 5y−6=2y+3 | | 2x=2÷3 |

Equations solver categories